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Abstract

There is significant literature which explores methods for clustering time-
series gene-expression data sets, such as the classical data set due to Spellman
et al. (1998). For instance James and Hastie (2001) use linear or quadratic
discriminant functions on fitted curves, while Bar-Joseph et al. (2003) using
a similar approach, do the clustering based on the coefficients of the fitted
splines. In a series of papers, Liu et al. (2006), medvedovic et al. (2004)
and Medvedovic and Sivaganesan (2002) present methods of clustering gene-
profiles, by treating them as multivariate vectors. In this work we take a
very different approach. Our goal is not exploratory as when one does clus-
tering, but confirmatory viz. to verify if the mean profiles of the obtained
clusters are significantly different. We treat the observed vector on each gene
as multivariate Gaussian, and fit a mean curve to each group, based on the
“growth curve” analysis. This approach coming from linear models for multi-
variate data, allows us to do proper statistical significance tests for checking
if a mean profile fits to the data, and if these profiles differ for the different
groups.

1 Introduction

Experiments where multiple measurements are obtained on the same unit are re-
ferred to as repeated-measures models. A typical situation is one where the same
child is observed at different time-points to note the growth, say in weight or height.
Such measurements are clearly correlated, so that the observation vectors at say p
different time-points can be considered as coming from a p-variate Gaussian. The
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data might be from different groups corresponding to different treatment condi-
tions and the goal is to compare the mean growth curves for these different groups.
In what follows, we treat the gene expression data over the different time-points
of a time-series data set as being multivariate Gaussian, to which we fit growth
curves of appropriate degree. We perform statistical tests to verify if the different
groups are significantly different in their mean profiles. In order to make the paper
self-contained as well as to explain this rather non-standard topic and notations, we
provide a somewhat detailed description of growth curve models in the next section,
before applying it to a real data set in the final section.

2 Growth curve modeling

Although linear models are a classical topic, extensions to the multivariate case
including the multivariate analysis of variance and in particular the idea of “growth
curves” are a somewhat specialized topic. In view of this and to make the treatment
self-contained, we give a brief review of the basic ideas. Further details can be found
in books by Kshirsagar and Smith (1995) and Pan and Fang (2002).

Suppose that there are r different groups and y denotes the real valued (growth)
variable measured at p different time points: t1, t2, ..., tp for nj individuals chosen
at random from the jth group, (j = 1, . . . , r). We specify the following polynomial
regression model of degree (q − 1) for the expression values y on the time variable
t,

E(yt) = ψj0t
0 + ψj1t

1 + ...+ ψjq−1t
q−1; (2.1)

(t = t1, ..., tp; p > q − 1; j = 1, 2, ..., r).

Let
N = n1 + n2 + ...+ nr

denote the total number of observations in all the groups put together. Let

ψ′j = [ψj0ψj1...ψjq−1] (2.2)

denote the vector of the curve coefficients for the jth group. Since the observations
yt1 , ..., ytp

are on the same item and hence correlated, we denote their variance-
covariance matrix by Σ. For simplicity and convenience, we assume Σ to be the
same for all the r groups.
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Let Yj denote the p × nj matrix of the observations for the jth group, with
each column of dimension p representing one gene. Let the p×N matrix

Y = [Y1 Y2 ... Yr]. (2.3)

denote the combined set of observations in all the r groups. Then from (2.1) we
get,

E(Yj) = [BψjBψj ...Bψj ]

= BψjE1nj (j = 1, 2, ..., r), (2.4)

where

B =


t01 t11 ... tq−1

1

t02 t12 ... tq−1
2

... ... ... ...
t0p t1p ... tq−1

p

 (2.5)

and Eab denotes, a matrix of order a×b with all elements equal to 1. Bp×q is called
the “design matrix,” whose elements depend on the basis we use to represent the
mean function. Let

Ar×N = diag[E1n1 ,E1n2 , ...,E1nr ], (2.6)

a block diagonal matrix with E1nj (j = 1, 2, ..., r) along the diagonal blocks and
zeros elsewhere. From Equation (2.4), we get

E(Y) = [Bψ1E1n1 |Bψ2E1n2 |...|BψrE1nr
]

= BΨA, (2.7)

where
Ψ = [ψ1 ... ψr] (2.8)

is the q × r matrix of the curve-coefficients.

Let VecY, be defined as the column vector obtained by stacking the columns
of Y one below the other. Denoting Var(VecY) by Var(Y) we see that,

Var(Y) = IN ⊗Σ, (2.9)
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where ⊗ denotes the Kronecker product of two matrices. Equation (2.7) together
with Equation (2.9) is called the “growth curve model,” introduced by Patthoff and
Roy (1964) and later analyzed by Khatri (1966), among others. See also Rao (1973)
(Section 8c) and Kshirsagar and Smith (1995) for exposition.

2.1 Fitting growth curves and testing

To fit the growth curve model and to test various hypotheses of interest, we need
to perform the following computations (see Kshirsagar and Smith (1995), Chapter
2 for details). Obtain a matrix B2 of order p× (p− q) such that

B′2B = 0, (2.10)

where B is as in Equation (2.5). This is accomplished for instance by choosing
(p − q) linearly independent columns of the matrix (Ip − B(B′B)−1B′). Next we
compute,

S = Y(I−A′(AA)−1A)Y′, (2.11)

where A is defined in Equation (2.6). The growth curve coefficient matrix is then
obtained as

ψ̂ = (B′S−1B)−1(B′S−1Y)A′(AA)−1, (2.12)

which reduces to

(B′S−1B)−1(B′S−1Y)

for the special matrix A defined in Equation (2.6). We now discuss two basic tests
of interest, namely, if the given model provides an adequate fit, and if so, based on
this model, if the data indicate significant differences between the r groups. To test
the first of these hypotheses,

H0 : Degree (q − 1) provides an adequate fit for the curves,

To test H0 we find the Wilks’ Λ statistic defined by

Λ0 =
| E0 |

| E0 + H0 |
, (2.13)
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where E0 = B′2SB2 and H0 + E0 = B′2YY′B2. The test statistic (see Rao (1973)):

F0 =
1−
√

Λ0√
Λ0

.
ms− 2λ
r(p− q)

, (2.14)

which has an approximate distribution Fdf1,df2 with degrees of freedom df1 =
(p − q)r, and df2 = ms − 2λ. Here m = N − p−q+r+1

2 , s = ( ((p−q)r)2−4
r2+(p−q)2−5 )

1
2 , and

λ = ((p− q)r − 2)/4.

Next, we test if the groups are significantly different from each other, i.e. the
hypothesis

H1 : ψ1 = ψ2 = ... = ψr

: or ΨM = 0; (2.15)

where

M =


1 0 0 ... 0
0 1 0 ... 0
. . . ... .

−1 −1 −1 ... −1

 .
To test this hypothesis we need:

E1 = (B′S−1B)−1

and
H1 = (ψ̂M)(M′R11M)−1(ψ̂M)′

where

R11 = (AA′)−1[I + AY′ ×
{

S−1B
(
BS−1B

)−1
}

YA′(AA′)−1]. (2.16)

Under the hypothesis H1, the test statistic

F1 =
1−
√

Λ1√
Λ1

.
(N − r − (−p− q)− 1)

m
. (2.17)

where

Λ1 =
| E1 |

| E1 + H1 |
, (2.18)

is the Wilks’ Λ, has an F distribution with df = 2m, 2(N − r − (p − q) − 1)
corresponding to the hypothesis and error degrees of freedom.
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3 Fitting growth curves to yeast cell-cycle data

In this section we fit growth curve models to a labeled portion of the yeast cell-
cycle data of Spellman et al. (1998). This microarray data set is publicly available
at http:://genome-www.stanford.edu/cellcycle/ and has been analyzed by many
authors. The particular data set we analyze here, deals with 798 genes and their
log-transformed expression ratios are given at 18 time periods, so that in the growth-
curve context p = 18. In this data set, there are r = 5 biologically different groups,
labeled MG1, G1, S, S/G2, and G2/M with n1 = 113, n2 = 299, n3 = 71, n4 = 121,
and n5 = 194 respectively for a grand total of N = 798 observations. Mean curves
were tried with polynomials of varying degrees and the AIC and BIC criteria appear
to indicate that a q value of 6 (corresponding to a 5th degree polynomial) provides
a good fit. Figure 1 demonstrates the fit, by plotting the model-mean against the
observed (sample) average at each time point for one of the groups, namely Group 5.

Figure 1. Observed and Model based Mean curves for Group 5

While this illustrates graphically that the fit is quite good, we do the test for
the model fit, i.e., the hypothesis H0. This gives Λ0 = 0.1518 (see Equation (2.13))
and a p-value close to zero, signifying a good fit.

Figure 2 provides a graphical comparison of the mean curves for the 5 groups.

The statistical test of hypothesis H1 gives a Λ1 = 0.5649 (see Equation (2.18))
with a p-value again close to zero, indicating that the 5 groups do indeed have
significantly different mean curves.
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Figure 2. Model-based Mean curves for the 5 groups

4 Conclusions

Many authors who consider gene expression data such as the Spellman data, use
supervised or unsupervised tools such as classification and clustering. Instead we
consider here a statistical or confirmatory approach based on growth-curve mod-
els, to see what the mean curves of the biologically distinct groups look like, and
whether they differ significantly. The statistical test concludes that these are in-
deed significantly different groups. Potential extensions of the current work include
(i) estimating the common covariance matrix Σ by assuming that it depends on
a smaller number of unknown parameters λ say Σ(λ) as in time-series models, in-
stead of the p(p+1)

2 unknowns, (ii) using cubic or B-splines instead of polynomials
for modeling the mean functions.
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